On existence of dark solitons in cubic-quintic nonlinear Schrödinger equation with a periodic potential

نویسندگان

  • Pedro J. Torres
  • Vladimir V. Konotop
چکیده

A proof of existence of stationary dark soliton solutions of the cubic-quintic nonlinear Schrödinger equation with a periodic potential is given. It is based on the interpretation of the dark soliton as a heteroclinic on the Poincaré map.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the existence of dark solitons of the defocusing cubic nonlinear Schrödinger equation with periodic inhomogeneous nonlinearity

We provide a simple proof of the existence of dark solitons of the defocusing cubic nonlinear Schrödinger equation with periodic inhomogeneous nonlinearity. Moreover, our proof allows for a broader class of inhomogeneities and gives some new properties of the solutions. We also apply our approach to the defocusing cubic-quintic nonlinear Schrödinger equation with a periodic potential. We consid...

متن کامل

Stability of spinning ring solitons of the cubic-quintic nonlinear Schrödinger equation

We investigate stability of (2+1)-dimensional ring solitons of the nonlinear Schrödinger equation with focusing cubic and defocusing quintic nonlinearities. Computing eigenvalues of the linearised equation, we show that rings with spin (topological charge) s = 1 and s = 2 are linearly stable, provided that they are very broad. The stability regions occupy, respectively, 9% and 8% of the corresp...

متن کامل

On Instability for the Quintic Nonlinear Schrödinger Equation of Some Approximate Periodic Solutions

Using the Fermi Golden Rule analysis developed in [CM], we prove asymptotic stability of asymmetric nonlinear bound states bifurcating from linear bound states for a quintic nonlinear Schrödinger operator with symmetric potential. This goes in the direction of proving that the approximate periodic solutions for the cubic Nonlinear Schrödinger Equation (NLSE) with symmetric potential in [MW] do ...

متن کامل

Multistable Solitons in the Cubic-Quintic Discrete Nonlinear Schrödinger Equation

We analyze the existence and stability of localized solutions in the one-dimensional discrete nonlinear Schrödinger (DNLS) equation with a combination of competing self-focusing cubic and defocusing quintic onsite nonlinearities. We produce a stability diagram for different families of soliton solutions, that suggests the (co)existence of infinitely many branches of stable localized solutions. ...

متن کامل

Scattering of Solitons and Dark Solitons by Potential Walls in the Nonlinear Schrödinger Equation

Scattering of solitons and dark solitons by potential walls is studied in the nonlinear Schrödinger equation under various conditions. We investigate the conditions under which solitons are split into two solitons at the potential wall. We find that a soliton can be trapped in an interspace between two potential walls. A dark soliton can also be scattered at the potential wall. Similarly to a b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006